高考數(shù)學(xué)知識(shí)點(diǎn):集合常考知識(shí)點(diǎn)
"高考數(shù)學(xué)知識(shí)點(diǎn):集合?贾R(shí)點(diǎn)"一文由育路編輯整理,更多精選內(nèi)容請(qǐng)關(guān)注育路網(wǎng)!
●難點(diǎn)磁場(chǎng)
(★★★★★)已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠,求實(shí)數(shù)m的取值范圍.
●案例探究
[例1]設(shè)A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=,證明此結(jié)論.
命題意圖:本題主要考查考生對(duì)集合及其符號(hào)的分析轉(zhuǎn)化能力,即能從集合符號(hào)上分辨出所考查的知識(shí)點(diǎn),進(jìn)而解決問題.屬★★★★★級(jí)題目.
知識(shí)依托:解決此題的閃光點(diǎn)是將條件(A∪B)∩C=轉(zhuǎn)化為A∩C=且B∩C=,這樣難度就降低了.
錯(cuò)解分析:此題難點(diǎn)在于考生對(duì)符號(hào)的不理解,對(duì)題目所給出的條件不能認(rèn)清其實(shí)質(zhì)內(nèi)涵,因而可能感覺無從下手.
技巧與方法:由集合A與集合B中的方程聯(lián)立構(gòu)成方程組,用判別式對(duì)根的情況進(jìn)行限制,可得到b、k的范圍,又因b、k∈N,進(jìn)而可得值.
解:∵(A∪B)∩C=,∴A∩C=且B∩C=
∵∴k2x2+(2bk-1)x+b2-1=0
∵A∩C=
∴Δ1=(2bk-1)2-4k2(b2-1)<0
∴4k2-4bk+1<0,此不等式有解,其充要條件是16b2-16>0,即b2>1①
∵
∴4x2+(2-2k)x+(5+2b)=0
∵B∩C=,∴Δ2=(1-k)2-4(5-2b)<0
∴k2-2k+8b-19<0,從而8b<20,即b<2.5②
由①②及b∈N,得b=2代入由Δ1<0和Δ2<0組成的不等式組,得
∴k=1,故存在自然數(shù)k=1,b=2,使得(A∪B)∩C=.
[例2]向50名學(xué)生調(diào)查對(duì)A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對(duì)A、B都不贊成的學(xué)生數(shù)比對(duì)A、B都贊成的學(xué)生數(shù)的三分之一多1人.問對(duì)A、B都贊成的學(xué)生和都不贊成的學(xué)生各有多少人?
命題意圖:在集合問題中,有一些常用的方法如數(shù)軸法取交并集,韋恩圖法等,需要考生切實(shí)掌握.本題主要強(qiáng)化學(xué)生的這種能力.屬★★★★級(jí)題目.
知識(shí)依托:解答本題的閃光點(diǎn)是考生能由題目中的條件,想到用韋恩圖直觀地表示出來.
(責(zé)任編輯:郭峰)
分享“高考數(shù)學(xué)知識(shí)點(diǎn):集合?贾R(shí)點(diǎn)”到:
- 2018高考高考數(shù)學(xué)得分技巧
- 高三文科生如何學(xué)習(xí)數(shù)學(xué)?
- 2018年高考幾何題解題必備方法
- 高考數(shù)學(xué)知識(shí)點(diǎn):對(duì)數(shù)函數(shù)的圖象與性質(zhì)
- 高考數(shù)學(xué)知識(shí)點(diǎn):函數(shù)的連續(xù)性
- 高考數(shù)學(xué)知識(shí)點(diǎn):圓周角定理
- 專家告訴你高考前如何高效復(fù)習(xí)數(shù)學(xué)學(xué)科
- 高考數(shù)學(xué)一輪備考算法初步知識(shí)點(diǎn)
- 高考數(shù)學(xué)立體幾何易錯(cuò)易混知識(shí)點(diǎn)
- 文科高考數(shù)學(xué)必背知識(shí)點(diǎn)--公式