制服一区字幕精品|一二三区欧洲视频|国产无遮挡裸体女|好吊色91青青草|色欲TV亚洲国产|私人高清强伦中文字幕|国产在线自慰欧美综合图区|色欲av成人一区二区三区在线观看|九九九久久精品亚洲视频久久精品|亚洲无码中文在线

育路教育網(wǎng),權(quán)威招生服務(wù)平臺(tái)
新東方在線

2013考研數(shù)學(xué)三大綱變化對(duì)比表

來源:文都考研 時(shí)間:2012-09-15 06:31:55

 
 
 
概率論與數(shù)理統(tǒng)計(jì)
 
 
2013考研數(shù)學(xué)三大綱變化對(duì)比表

 

 
 
 
概率論與數(shù)理統(tǒng)計(jì)
 
 
2013考研數(shù)學(xué)三大綱變化對(duì)比表
        來源:文都教育
章節(jié)
2013大綱
2012大綱
變化對(duì)比
一、              
隨機(jī)事件和概率
 
考試內(nèi)容
隨機(jī)事件與樣本空間,事件的關(guān)系與運(yùn)算,完備事件組,概率的概念,概率的基本性質(zhì),古典型概率,幾何型概率,條件概率,概率的基本公式,事件的獨(dú)立性,獨(dú)立重復(fù)試驗(yàn)
考試要求
1. 了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運(yùn)算。
2. 理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等。
3. 理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法。
 
考試內(nèi)容
隨機(jī)事件與樣本空間,事件的關(guān)系與運(yùn)算,完備事件組,概率的概念,概率的基本性質(zhì),古典型概率,幾何型概率,條件概率,概率的基本公式,事件的獨(dú)立性,獨(dú)立重復(fù)試驗(yàn)
考試要求
1. 了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運(yùn)算。
2. 理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等。
3. 理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法。
 
無變化
二、              
隨機(jī)變量及其分布
 
考試內(nèi)容
隨機(jī)變量,隨機(jī)變量分布函數(shù)的概念及其性質(zhì),離散型隨機(jī)變量的概率分布,連續(xù)型隨機(jī)變量的概率密度,常見隨機(jī)變量的分布,隨機(jī)變量函數(shù)的分布
考試要求
1. 理解隨機(jī)變量的概念,理解分布函數(shù)
的概念及性質(zhì),會(huì)計(jì)算與隨機(jī)變量相聯(lián)系的事件的概率。
2. 理解離散型隨機(jī)變量及其概率分布的概念,掌握0—1分布、二項(xiàng)分布B(n,p)、幾何分布、超幾何分布、泊松(Poisson)分布及其應(yīng)用。
3. 掌握泊松定理的結(jié)論和應(yīng)用條件,會(huì)用泊松分布近似表示二項(xiàng)分布。
4. 理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布U(a,b)、正態(tài)分布、指數(shù)分布及其應(yīng)用,其中參數(shù)為()的指數(shù)分布的概率密度為
5. 會(huì)求隨機(jī)變量函數(shù)的分布。
 
考試內(nèi)容
隨機(jī)變量,隨機(jī)變量分布函數(shù)的概念及其性質(zhì),離散型隨機(jī)變量的概率分布,連續(xù)型隨機(jī)變量的概率密度,常見隨機(jī)變量的分布,隨機(jī)變量函數(shù)的分布
考試要求
1. 理解隨機(jī)變量的概念,理解分布函數(shù)
的概念及性質(zhì),會(huì)計(jì)算與隨機(jī)變量相聯(lián)系的事件的概率。
2.  理解離散型隨機(jī)變量及其概率分布的概念,掌握0—1分布、二項(xiàng)分布B(n,p)、幾何分布、超幾何分布、泊松(Poisson)分布及其應(yīng)用。
3. 掌握泊松定理的結(jié)論和應(yīng)用條件,會(huì)用泊松分布近似表示二項(xiàng)分布。
4. 理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布U(a,b)、正態(tài)分布、指數(shù)分布及其應(yīng)用,其中參數(shù)為()的指數(shù)分布的概率密度為
5. 會(huì)求隨機(jī)變量函數(shù)的分布。
 
無變化
三、多維隨機(jī)變量的分布
 
考試內(nèi)容
多維隨機(jī)變量及其分布函數(shù),二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布,二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度,隨機(jī)變量的獨(dú)立性和不相關(guān)性,常見二維隨機(jī)變量的分布,兩個(gè)及兩個(gè)以上隨機(jī)變量的函數(shù)的分布
考試要求
1. 理解多維隨機(jī)變量的分布函數(shù)的概念和基本性質(zhì)。
2. 理解二維離散型隨機(jī)變量的概率分布和二維連續(xù)型隨機(jī)變量的概率密度,掌握二維隨機(jī)變量的邊緣分布和條件分布。
3. 理解隨機(jī)變量的獨(dú)立性和不相關(guān)性的概念,掌握隨機(jī)變量相互獨(dú)立的條件,理解隨機(jī)變量的不相關(guān)性與獨(dú)立性的關(guān)系。
4. 掌握二維均勻分布和二維正態(tài)分布,理解其中參數(shù)的意義。
5. 會(huì)根據(jù)兩個(gè)隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布,會(huì)根據(jù)多個(gè)相互獨(dú)立隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布。
 
 
考試內(nèi)容
多維隨機(jī)變量及其分布函數(shù),二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布,二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度,隨機(jī)變量的獨(dú)立性和不相關(guān)性,常見二維隨機(jī)變量的分布,兩個(gè)及兩個(gè)以上隨機(jī)變量的函數(shù)的分布
考試要求
1. 理解多維隨機(jī)變量的分布函數(shù)的概念和基本性質(zhì)。
2. 理解二維離散型隨機(jī)變量的概率分布和二維連續(xù)型隨機(jī)變量的概率密度,掌握二維隨機(jī)變量的邊緣分布和條件分布。
3. 理解隨機(jī)變量的獨(dú)立性和不相關(guān)性的概念,掌握隨機(jī)變量相互獨(dú)立的條件,理解隨機(jī)變量的不相關(guān)性與獨(dú)立性的關(guān)系。
4. 掌握二維均勻分布和二維正態(tài)分布,理解其中參數(shù)的意義。
5. 會(huì)根據(jù)兩個(gè)隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布,會(huì)根據(jù)多個(gè)相互獨(dú)立隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布。
 
無變化
四、隨機(jī)變量的數(shù)字特征
 
考試內(nèi)容
隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì),隨機(jī)變量函數(shù)的數(shù)學(xué)期望,切比雪夫(Chebyshew)不等式,矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)
考試要求
1. 理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會(huì)運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征。
2. 會(huì)求隨機(jī)變量函數(shù)的數(shù)學(xué)期望。
3. 了解切比雪夫不等式。
 
考試內(nèi)容
隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì),隨機(jī)變量函數(shù)的數(shù)學(xué)期望,切比雪夫(Chebyshew)不等式,矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)
考試要求
1. 理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會(huì)運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征。
2. 會(huì)求隨機(jī)變量函數(shù)的數(shù)學(xué)期望。
3. 了解切比雪夫不等式。
 
無變化
五、大數(shù)定律和中心極限定理
 
 
考試內(nèi)容
切比雪夫大數(shù)定律,伯努利(Bernoulli)大數(shù)定律,辛欽(Khinchine)大數(shù)定律,棣莫弗—拉普拉斯(De Moivre-Laplace)定理,列維—林德伯格(Levy-Lindberg)定理
考試要求
1. 了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨(dú)立同分布隨機(jī)變量序列的大數(shù)定律)。
2. 了解棣莫弗—拉普拉斯中心極限定理(二項(xiàng)分布以正態(tài)分布為極限分布)、列維—林德伯格中心極限定理(獨(dú)立同分布隨機(jī)變量序列的中心極限定理),并會(huì)用相關(guān)定理近似計(jì)算有關(guān)隨機(jī)事件的概率。
 
 
考試內(nèi)容
切比雪夫大數(shù)定律,伯努利(Bernoulli)大數(shù)定律,辛欽(Khinchine)大數(shù)定律,棣莫弗—拉普拉斯(De Moivre-Laplace)定理,列維—林德伯格(Levy-Lindberg)定理
考試要求
1. 了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨(dú)立同分布隨機(jī)變量序列的大數(shù)定律)。
2. 了解棣莫弗—拉普拉斯中心極限定理(二項(xiàng)分布以正態(tài)分布為極限分布)、列維—林德伯格中心極限定理(獨(dú)立同分布隨機(jī)變量序列的中心極限定理),并會(huì)用相關(guān)定理近似計(jì)算有關(guān)隨機(jī)事件的概率。
 
無變化
六、數(shù)理統(tǒng)計(jì)的基本概念
 
考試內(nèi)容
總體,個(gè)體,簡(jiǎn)單隨機(jī)樣本,統(tǒng)計(jì)量,經(jīng)驗(yàn)分布函數(shù),樣本均值,樣本方差和樣本矩,分布,t分布,F(xiàn)分布,分位數(shù),正態(tài)總體的常用抽樣分布
考試要求
1. 了解總體、簡(jiǎn)單隨機(jī)樣本、統(tǒng)計(jì)量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為
2. 了解產(chǎn)生變量、t變量和F變量的典型模式;了解標(biāo)準(zhǔn)正態(tài)分布、分布,t分布和F分布的上側(cè)分位數(shù),會(huì)查相應(yīng)的數(shù)值表。
3. 掌握正態(tài)總體的樣本均值、樣本方差、樣本矩的抽樣分布。
了解經(jīng)驗(yàn)分布函數(shù)的概念和性質(zhì)。
考試內(nèi)容
總體,個(gè)體,簡(jiǎn)單隨機(jī)樣本,統(tǒng)計(jì)量,經(jīng)驗(yàn)分布函數(shù),樣本均值,樣本方差和樣本矩,分布,t分布,F(xiàn)分布,分位數(shù),正態(tài)總體的常用抽樣分布
考試要求
1. 了解總體、簡(jiǎn)單隨機(jī)樣本、統(tǒng)計(jì)量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為
2. 了解產(chǎn)生變量、t變量和F變量的典型模式;了解標(biāo)準(zhǔn)正態(tài)分布、分布,t分布和F分布的上側(cè)分位數(shù),會(huì)查相應(yīng)的數(shù)值表。
3. 掌握正態(tài)總體的樣本均值、樣本方差、樣本矩的抽樣分布。
了解經(jīng)驗(yàn)分布函數(shù)的概念和性質(zhì)。
無變化
七、參數(shù)估計(jì)
 
考試內(nèi)容
點(diǎn)估計(jì)的概念,估計(jì)量和估計(jì)值,矩估計(jì)法,比較大似然估計(jì)法
考試要求
1. 了解參數(shù)的點(diǎn)估計(jì)、估計(jì)量與估計(jì)值的概念。
掌握矩估計(jì)法(一階矩、二階矩)和比較大似然估計(jì)法
考試內(nèi)容
點(diǎn)估計(jì)的概念,估計(jì)量和估計(jì)值,矩估計(jì)法,比較大似然估計(jì)法
考試要求
1. 了解參數(shù)的點(diǎn)估計(jì)、估計(jì)量與估計(jì)值的概念。
掌握矩估計(jì)法(一階矩、二階矩)和比較大似然估計(jì)法
無變化

 

        來源:文都教育
章節(jié)
2013大綱
2012大綱
變化對(duì)比
一、              
隨機(jī)事件和概率
 
考試內(nèi)容
隨機(jī)事件與樣本空間,事件的關(guān)系與運(yùn)算,完備事件組,概率的概念,概率的基本性質(zhì),古典型概率,幾何型概率,條件概率,概率的基本公式,事件的獨(dú)立性,獨(dú)立重復(fù)試驗(yàn)
考試要求
1. 了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運(yùn)算。
2. 理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等。
3. 理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法。
 
考試內(nèi)容
隨機(jī)事件與樣本空間,事件的關(guān)系與運(yùn)算,完備事件組,概率的概念,概率的基本性質(zhì),古典型概率,幾何型概率,條件概率,概率的基本公式,事件的獨(dú)立性,獨(dú)立重復(fù)試驗(yàn)
考試要求
1. 了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運(yùn)算。
2. 理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等。
3. 理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法。
 
無變化
二、              
隨機(jī)變量及其分布
 
考試內(nèi)容
隨機(jī)變量,隨機(jī)變量分布函數(shù)的概念及其性質(zhì),離散型隨機(jī)變量的概率分布,連續(xù)型隨機(jī)變量的概率密度,常見隨機(jī)變量的分布,隨機(jī)變量函數(shù)的分布
考試要求
1. 理解隨機(jī)變量的概念,理解分布函數(shù)
的概念及性質(zhì),會(huì)計(jì)算與隨機(jī)變量相聯(lián)系的事件的概率。
2. 理解離散型隨機(jī)變量及其概率分布的概念,掌握0—1分布、二項(xiàng)分布B(n,p)、幾何分布、超幾何分布、泊松(Poisson)分布及其應(yīng)用。
3. 掌握泊松定理的結(jié)論和應(yīng)用條件,會(huì)用泊松分布近似表示二項(xiàng)分布。
4. 理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布U(a,b)、正態(tài)分布、指數(shù)分布及其應(yīng)用,其中參數(shù)為()的指數(shù)分布的概率密度為
5. 會(huì)求隨機(jī)變量函數(shù)的分布。
 
考試內(nèi)容
隨機(jī)變量,隨機(jī)變量分布函數(shù)的概念及其性質(zhì),離散型隨機(jī)變量的概率分布,連續(xù)型隨機(jī)變量的概率密度,常見隨機(jī)變量的分布,隨機(jī)變量函數(shù)的分布
考試要求
1. 理解隨機(jī)變量的概念,理解分布函數(shù)
的概念及性質(zhì),會(huì)計(jì)算與隨機(jī)變量相聯(lián)系的事件的概率。
2.  理解離散型隨機(jī)變量及其概率分布的概念,掌握0—1分布、二項(xiàng)分布B(n,p)、幾何分布、超幾何分布、泊松(Poisson)分布及其應(yīng)用。
3. 掌握泊松定理的結(jié)論和應(yīng)用條件,會(huì)用泊松分布近似表示二項(xiàng)分布。
4. 理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布U(a,b)、正態(tài)分布、指數(shù)分布及其應(yīng)用,其中參數(shù)為()的指數(shù)分布的概率密度為
5. 會(huì)求隨機(jī)變量函數(shù)的分布。
 
無變化
三、多維隨機(jī)變量的分布
 
考試內(nèi)容
多維隨機(jī)變量及其分布函數(shù),二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布,二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度,隨機(jī)變量的獨(dú)立性和不相關(guān)性,常見二維隨機(jī)變量的分布,兩個(gè)及兩個(gè)以上隨機(jī)變量的函數(shù)的分布
考試要求
1. 理解多維隨機(jī)變量的分布函數(shù)的概念和基本性質(zhì)。
2. 理解二維離散型隨機(jī)變量的概率分布和二維連續(xù)型隨機(jī)變量的概率密度,掌握二維隨機(jī)變量的邊緣分布和條件分布。
3. 理解隨機(jī)變量的獨(dú)立性和不相關(guān)性的概念,掌握隨機(jī)變量相互獨(dú)立的條件,理解隨機(jī)變量的不相關(guān)性與獨(dú)立性的關(guān)系。
4. 掌握二維均勻分布和二維正態(tài)分布,理解其中參數(shù)的意義。
5. 會(huì)根據(jù)兩個(gè)隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布,會(huì)根據(jù)多個(gè)相互獨(dú)立隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布。
 
 
考試內(nèi)容
多維隨機(jī)變量及其分布函數(shù),二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布,二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度,隨機(jī)變量的獨(dú)立性和不相關(guān)性,常見二維隨機(jī)變量的分布,兩個(gè)及兩個(gè)以上隨機(jī)變量的函數(shù)的分布
考試要求
1. 理解多維隨機(jī)變量的分布函數(shù)的概念和基本性質(zhì)。
2. 理解二維離散型隨機(jī)變量的概率分布和二維連續(xù)型隨機(jī)變量的概率密度,掌握二維隨機(jī)變量的邊緣分布和條件分布。
3. 理解隨機(jī)變量的獨(dú)立性和不相關(guān)性的概念,掌握隨機(jī)變量相互獨(dú)立的條件,理解隨機(jī)變量的不相關(guān)性與獨(dú)立性的關(guān)系。
4. 掌握二維均勻分布和二維正態(tài)分布,理解其中參數(shù)的意義。
5. 會(huì)根據(jù)兩個(gè)隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布,會(huì)根據(jù)多個(gè)相互獨(dú)立隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布。
 
無變化
四、隨機(jī)變量的數(shù)字特征
 
考試內(nèi)容
隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì),隨機(jī)變量函數(shù)的數(shù)學(xué)期望,切比雪夫(Chebyshew)不等式,矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)
考試要求
1. 理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會(huì)運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征。
2. 會(huì)求隨機(jī)變量函數(shù)的數(shù)學(xué)期望。
3. 了解切比雪夫不等式。
 
考試內(nèi)容
隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì),隨機(jī)變量函數(shù)的數(shù)學(xué)期望,切比雪夫(Chebyshew)不等式,矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)
考試要求
1. 理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會(huì)運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征。
2. 會(huì)求隨機(jī)變量函數(shù)的數(shù)學(xué)期望。
3. 了解切比雪夫不等式。
 
無變化
五、大數(shù)定律和中心極限定理
 
 
考試內(nèi)容
切比雪夫大數(shù)定律,伯努利(Bernoulli)大數(shù)定律,辛欽(Khinchine)大數(shù)定律,棣莫弗—拉普拉斯(De Moivre-Laplace)定理,列維—林德伯格(Levy-Lindberg)定理
考試要求
1. 了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨(dú)立同分布隨機(jī)變量序列的大數(shù)定律)。
2. 了解棣莫弗—拉普拉斯中心極限定理(二項(xiàng)分布以正態(tài)分布為極限分布)、列維—林德伯格中心極限定理(獨(dú)立同分布隨機(jī)變量序列的中心極限定理),并會(huì)用相關(guān)定理近似計(jì)算有關(guān)隨機(jī)事件的概率。
 
 
考試內(nèi)容
切比雪夫大數(shù)定律,伯努利(Bernoulli)大數(shù)定律,辛欽(Khinchine)大數(shù)定律,棣莫弗—拉普拉斯(De Moivre-Laplace)定理,列維—林德伯格(Levy-Lindberg)定理
考試要求
1. 了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨(dú)立同分布隨機(jī)變量序列的大數(shù)定律)。
2. 了解棣莫弗—拉普拉斯中心極限定理(二項(xiàng)分布以正態(tài)分布為極限分布)、列維—林德伯格中心極限定理(獨(dú)立同分布隨機(jī)變量序列的中心極限定理),并會(huì)用相關(guān)定理近似計(jì)算有關(guān)隨機(jī)事件的概率。
 
無變化
六、數(shù)理統(tǒng)計(jì)的基本概念
 
考試內(nèi)容
總體,個(gè)體,簡(jiǎn)單隨機(jī)樣本,統(tǒng)計(jì)量,經(jīng)驗(yàn)分布函數(shù),樣本均值,樣本方差和樣本矩,分布,t分布,F(xiàn)分布,分位數(shù),正態(tài)總體的常用抽樣分布
考試要求
1. 了解總體、簡(jiǎn)單隨機(jī)樣本、統(tǒng)計(jì)量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為
2. 了解產(chǎn)生變量、t變量和F變量的典型模式;了解標(biāo)準(zhǔn)正態(tài)分布、分布,t分布和F分布的上側(cè)分位數(shù),會(huì)查相應(yīng)的數(shù)值表。
3. 掌握正態(tài)總體的樣本均值、樣本方差、樣本矩的抽樣分布。
了解經(jīng)驗(yàn)分布函數(shù)的概念和性質(zhì)。
考試內(nèi)容
總體,個(gè)體,簡(jiǎn)單隨機(jī)樣本,統(tǒng)計(jì)量,經(jīng)驗(yàn)分布函數(shù),樣本均值,樣本方差和樣本矩,分布,t分布,F(xiàn)分布,分位數(shù),正態(tài)總體的常用抽樣分布
考試要求
1. 了解總體、簡(jiǎn)單隨機(jī)樣本、統(tǒng)計(jì)量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為
2. 了解產(chǎn)生變量、t變量和F變量的典型模式;了解標(biāo)準(zhǔn)正態(tài)分布、分布,t分布和F分布的上側(cè)分位數(shù),會(huì)查相應(yīng)的數(shù)值表。
3. 掌握正態(tài)總體的樣本均值、樣本方差、樣本矩的抽樣分布。
了解經(jīng)驗(yàn)分布函數(shù)的概念和性質(zhì)。
無變化
七、參數(shù)估計(jì)
 
考試內(nèi)容
點(diǎn)估計(jì)的概念,估計(jì)量和估計(jì)值,矩估計(jì)法,比較大似然估計(jì)法
考試要求
1. 了解參數(shù)的點(diǎn)估計(jì)、估計(jì)量與估計(jì)值的概念。
掌握矩估計(jì)法(一階矩、二階矩)和比較大似然估計(jì)法
考試內(nèi)容
點(diǎn)估計(jì)的概念,估計(jì)量和估計(jì)值,矩估計(jì)法,比較大似然估計(jì)法
考試要求
1. 了解參數(shù)的點(diǎn)估計(jì)、估計(jì)量與估計(jì)值的概念。
掌握矩估計(jì)法(一階矩、二階矩)和比較大似然估計(jì)法
無變化

結(jié)束

特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責(zé)任;

②部分稿件來源于網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系我們溝通解決。

有用

25人覺得有用

閱讀全文

2019考研VIP資料免費(fèi)領(lǐng)取

【隱私保障】

育路為您提供專業(yè)解答

相關(guān)文章推薦
您可能感興趣
為什么要報(bào)考研輔導(dǎo)班? 如何選擇考研輔導(dǎo)班? 考研輔導(dǎo)班哪個(gè)好? 哪些北京考研輔導(dǎo)班靠譜? 2019考研輔導(dǎo)班大全