制服一区字幕精品|一二三区欧洲视频|国产无遮挡裸体女|好吊色91青青草|色欲TV亚洲国产|私人高清强伦中文字幕|国产在线自慰欧美综合图区|色欲av成人一区二区三区在线观看|九九九久久精品亚洲视频久久精品|亚洲无码中文在线

育路教育網(wǎng),權(quán)威招生服務(wù)平臺(tái)
新東方在線

2012考研數(shù)學(xué):線性代數(shù)知識(shí)點(diǎn)框架(5)

來源:育路教育網(wǎng) 時(shí)間:2011-08-14 12:38:47

  在之前研究線性方程組的解的過程當(dāng)中,注意到矩陣及其秩有著重要的地位和應(yīng)用,故還有必要對(duì)矩陣及其運(yùn)算進(jìn)行專門探討。

  矩陣的加法和數(shù)乘,與向量的運(yùn)算類同。

  矩陣的另外一個(gè)重要應(yīng)用:線性變換(比較典型例子是旋轉(zhuǎn)變換)。即可以把一個(gè)矩陣看作是一種線性變換在數(shù)學(xué)上的表述。

  矩陣的乘法,反映的是線性變換的疊加。如矩陣A對(duì)應(yīng)的是旋轉(zhuǎn)一個(gè)角度a,矩陣B對(duì)應(yīng)的是旋轉(zhuǎn)一個(gè)角度b,則矩陣AB對(duì)應(yīng)的是旋轉(zhuǎn)一個(gè)角度a+b。

  矩陣乘法的特點(diǎn):若C=AB,則C的第i行、第j列的元素是A的第i行與B的第j列的元素對(duì)應(yīng)乘積之和;A的列數(shù)要和B的行數(shù)相同;C的行數(shù)是A的行數(shù),列數(shù)是B的列數(shù)。需要主義的是矩陣乘法不滿足交換律,滿足結(jié)合律。

  利用矩陣乘積的寫法,線性方程組可更簡單的表示為:Ax=b。

  對(duì)于C=AB,還可作如下分析:將左邊的矩陣A寫成列向量組的形式,即意味著C的列向量組能由A的列向量組表示,從而推知C的列秩小于等于A的列秩;將右邊的矩陣B寫成行向量組的形式,即意味著C的行向量組能由B的行向量組表示,從而推知C的行秩小于等于B的行秩,再考慮到矩陣的行秩等于列秩等于矩陣的秩,比較終可得到結(jié)論,C的秩小于等于A的秩,也小于等于B的秩,即矩陣乘積的秩總不超過任一個(gè)因子的秩。

  關(guān)于矩陣乘積的另外一個(gè)重要結(jié)論:矩陣乘積的行列式等于各因子的行列式的乘積。

結(jié)束

特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責(zé)任;

②部分稿件來源于網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系我們溝通解決。

有用

25人覺得有用

閱讀全文

2019考研VIP資料免費(fèi)領(lǐng)取

【隱私保障】

育路為您提供專業(yè)解答

相關(guān)文章推薦

14

2011.08

2012考研數(shù)學(xué):線性代數(shù)知識(shí)點(diǎn)框架(4)

  為了求向量組的秩,我們來考慮矩陣。矩陣的列向量組的秩稱為矩陣的列秩,行向量組的秩稱為行秩!......

14

2011.08

2012考研數(shù)學(xué):線性代數(shù)知識(shí)點(diǎn)框架(3)

  部分組線性相關(guān),整個(gè)向量組線性相關(guān)。向量組線性無關(guān),延伸組線性無關(guān)! 』氐骄性方程組的解的......

14

2011.08

2012考研數(shù)學(xué):線性代數(shù)知識(shí)點(diǎn)框架(2)

  利用高斯消元法和解的判別定理,以及能夠回答前述的基本問題(1)解的存在性問題和(2)如何求解的問題......

14

2011.08

2012考研數(shù)學(xué):線性代數(shù)知識(shí)點(diǎn)框架(1)

  線性代數(shù)的學(xué)習(xí)切入點(diǎn):線性方程組。換言之,可以把線性代數(shù)看作是在研究線性方程組這一對(duì)象的過程......

14

2011.08

2012考研數(shù)學(xué):抓牢線性代數(shù)是得高分關(guān)鍵

  考研數(shù)學(xué)想要拿高分不是一件難事,但是如果沒有努力的付出,也是不可能取得理想的成績的。線性代數(shù)......

14

2011.08

考研政治馬哲唯物辯證法復(fù)習(xí)知識(shí)點(diǎn)(6)

  (3)主要矛盾和非主要矛盾、矛盾的主要方面和矛盾的非主要方面(兩點(diǎn)論和重點(diǎn)論)  在復(fù)雜的矛盾系......

您可能感興趣
為什么要報(bào)考研輔導(dǎo)班? 如何選擇考研輔導(dǎo)班? 考研輔導(dǎo)班哪個(gè)好? 哪些北京考研輔導(dǎo)班靠譜? 2019考研輔導(dǎo)班大全